
IT3505 Web Application Development II

BIT 2nd Year
Semester 3
IT 3505

Web Application Development II

Server Side Web Development (PHP &

MySQL) –

Part 2

Duration: 30 hours

IT3505 Web Application Development II

Instructional Objectives

 Install PHP in a windows environment

 Install PHP in Linux environment

 Explain basic features of PHP

 Articulate MVC architecture

 Differentiate available PHP frameworks

 Explain MVC

 Use web services with PHP

 Develop a web application with PHP

IT3505 Web Application Development II

Sub Topics
1.1 Introduction to PHP (Ref 01 Pg:271-278)
1.2. Configuring the environment (Ref 01 Pg : 76 - 85)
1.3. PHP Syntax and Semantics

1.3.1. Variables (Ref 01 Pg:281-287)
1.3.2. Constants (Ref 01 pg:287 - 296)
1.3.3. Conditional Statements (Ref 01 pg:320-335)
1.3.4. Loops (Ref 01 Pg:335-346)
1.3.5. Functions (Ref 01 Pg: 346-357)

1.4. Arrays and data processing with arrays (Ref 01 Pg: 296-307)
1.5. Form processing with PHP (Ref 02)
1.6. Session control and Cookies (Ref 01 Pg:437-446)
1.7. File system management (Ref 01 Pg: 366-389)
1.8. Email sending using PHP (Ref 03)
1.9. Object Orientation with PHP (Ref 01 pg :397-423)
1.10. Working with MySQL database (Ref 01 PG:515-528)
1.11. Introduction to PHP frameworks (Ref 5)
1.12. Fundamentals of MVC (Ref 6)
1.13. How to call web service using PHP (Ref 01 pg:541-553)

IT3505 Web Application Development II

Data Types

• A Data type can be described as a collection of
values and a set of operations over these
values.

• The different primitive data types provided by
PHP can be classified as

• Scalar Types

• Compound Types

• Special Types

IT3505 Web Application Development II

PHP Data Types

 PHP supports the following primitive scalar data types.

 Integer

 Floating point (or Double)

 String

 Boolean

IT3505 Web Application Development II

Integer Data Type

 Any number in the set {….,-2,-1,0,1,2,………} is considered as an integer.
The maximum and the minimum integer value that can be used in a
program are platform dependent.

 The number of bytes allocated to store an integer and the maximum
integer value that can be used in your platform can be determined by
using the constants PHP_INIT_SIZE and PHP_INT_MAX

 If PHP encounters a number larger than PHP_INT_MAX, the number
will be interpreted as a floating point number.

Example :
<?php
echo PHP_INT_SIZE,"\n",PHP_INT_MAX;
?>

IT3505 Web Application Development II

Integer Data Type …..

 An integer literal can be specified in decimal,
octal, hexadecimal or binary.

BNF Definition of integers in PHP
<Integer> : [+-]?<decimal> | [+-]?<hexadecimal> | [+-
]?<octal> | [+-]?<binary>

<decimal> : [1-9][0-9]* | 0

<hexadecimal> : 0[xX][0-9a-fA-F]+

<octal> : 0[0-7]+

<Binary> : 0b[01]+

IT3505 Web Application Development II

Integer Data Type …..

Examples:

 1234 // a positive integer in decimal form

 -123 // a negative integer in decimal form

 0123 // integer 83 in octal form

 0x2b1 // integer 689 in hexadecimal form

 0b01101 // integer 13 in binary form

IT3505 Web Application Development II

Floating Point Data Type

 The numbers with decimal points are considered as floating point
(double or real) numbers.

 The floating point numbers are represented internally by using
IEEE floating point representation. Thus the representations are
not exact. Therefor floating point numbers should not compare for
equality.

 Floating point literals can be coded in a number of different ways.

Example :
-1.23
1.2e3
34.45E-12

IT3505 Web Application Development II

Floating Point Data Type …

BNF Definition of floating point numbers in PHP
<Floating point numbers> : <LNUM> | <DNUM>| <EXPONENT_DNUM>

<LNUM> : [0-9]+

<DNUM> : [0-9]*. <LNUM> | <LNUM> . [0-9]*

<EXPONENT_DNUM> : [+-]?(<LNUM>|<DNUM>) [eE][+-]? <LNUM>

IT3505 Web Application Development II

Arithmetic Operators

 The following operators can be applied on
both integers and floating point numbers.

Operator Result

Unary - Negation of the number

Binary - Subtraction

+ Addition

* Multiplication

/ Division

% Remainder

IT3505 Web Application Development II

Arithmetic Operators

Example :
<?php

echo -3,"\t",5 - 3,"\t",5.2*3.4,

"\t",10/2,"\t",

10/4,"\t",10%3,"\n";

?>

 Note that the division operator returns an integer
when the two operands used are integers and
numbers are evenly divisible.

IT3505 Web Application Development II

String Data Type

 A string comprises of a series of characters.

 The series of characters in a string literal are
normally represented either in single quotes or
in double quotes.

Example :
<?php

echo "This is a string literal","\n";

echo 'Another string literal';

?>

IT3505 Web Application Development II

String Data Type

 A string comprises of a series of characters.
 The series of characters in a string literal are

normally represented either in single quotes or
in double quotes.

Example :
<?php
echo "This is a string literal \n";
echo 'Another string literal';
?>

IT3505 Web Application Development II

Special character sequences

 Certain character sequences are given special
meanings in PHP.

Character sequence Special Meaning

\n Linefeed

\t Horizontal tab

\$ Dollar sign

\” Double quote

IT3505 Web Application Development II

Special character sequences

 The special character sequences retain their
special meanings only when used inside
double quotes.

Example :
<?php

echo 'How the character sequence \n works';

echo "\n As a line feed";

?>

IT3505 Web Application Development II

String Operators

Operator Result

. String Concatenation

IT3505 Web Application Development II

String Operators …..

Example :

<?php

echo "abc" . "def";

?>

IT3505 Web Application Development II

Boolean Data Type

 The Boolean data type consists of the two
Boolean literals “TRUE” and “FALSE”.

 The representation of the Boolean literals is not
case sensitive.

 In PHP the following values are also considered
as “FALSE”
 The integer 0.

 The floating value 0.0

 The empty string “” and ‘’

 The string “0” and ‘0’

IT3505 Web Application Development II

Boolean (Logical) Operators

 The following operators can be applied on
both integers and floating point numbers.

Operator Result

and, && TRUE when both operands are TRUE

or, || TRUE when either operand is TRUE

xor TRUE when either operand is TRUE, but not both

! negation

IT3505 Web Application Development II

Print() vs echo()
 echo and print both are language constructs, and can be

used with or without parentheses:
 echo or echo()
 print or print()

 But , there are some differences :
 echo - can output more than one strings
 print - can output only one string, and returns always 1

<?php

$txt1="Learn PHP";

$txt2=“BIT @ UCSC";

$Modules=array(“HTML5",“CSS",

“JS");

echo $txt1;

echo "
";

echo "Study PHP at $txt2";

echo “I also

learn{$Modules[0]}";

?>

<?php

$txt1="Learn PHP";

$txt2=“BIT @ UCSC";

$Modules=array(“HTML5",“CSS",

“JS");

print $txt1;

print "
";

print "Study PHP at $txt2";

print “I also

learn{$Modules[0]}";

?>

IT3505 Web Application Development II

echo command on Boolean values

All parameters of echo command should be of type string.
Thus when printing Boolean literals

by using echo will cause Boolean values to be converted into
strings prior to printing. When

converting Boolean literals to strings the True Boolean literal is
converted to the string “1” and

the “FALSE” literal is converted to the empty string.

Example :
<?php
echo "Result of false or true : ", false or true, "\n";
echo "Result of false or false : ", false or false, "\n";
?>

IT3505 Web Application Development II

Variables

• Variables should start by the dollar sign
followed by the name of the variable.

• The variable name is case-sensitive.

• A valid variable name starts with a letter or
underscore, followed by any number of letters,
numbers, or underscores.

– $this is a special variable, thus cannot be used for
a different purpose.

IT3505 Web Application Development II

Variables

• a, _a, a11, _1, _a1__ are all valid variable names.

• $a, $_a, $a11, $_1, $_a1__ are all valid variables.

The following variables are not valid

• _a does not start with the $ symbol

• $1a_b does not start with a letter or the _
symbols

• $a_# # is not a valid symbol to be used in a
variable name

IT3505 Web Application Development II

Variables

• The variable names are case-sensitive.

• The variables listed below are different
variable:

 $Name

 $name

 $NAME

 $NAme

IT3505 Web Application Development II

Assignment Operator

• PHP assignment operator is “=“.
• Syntax of the assignment operator:

Variable = expression

Semantic of the assignment operator
– The right hand side expression to “=“ is computed and

the result is assigned to the left hand side operand –
assign by value

– In PHP assignment statement has a return value,
which is the result of the expression on the right hand
side.

IT3505 Web Application Development II

Assignment Operator
<?php

$a =-47;

$_a = “abc”;

$a11 = 2.1e3;

$_1 = ‘xyz’;

$_a1__ = true;

print("$a,$_a,$a11,$_1,$_a1__")

?>

IT3505 Web Application Development II

Assignment Operator - Examples

<?php

$a = 4;

$b = ($c = $a+6) + 4;

echo "$a,$b,$c";

?>

IT3505 Web Application Development II

Expressions

• Anything that has a value is termed as an expression.
This means that any expression in php should have a
value.

• The following are examples for expressions
–5

–“abc”

–5 + 45

–3 + 3.45e2

–$a = 5

• In the last expression, the value of the expression is 5

IT3505 Web Application Development II

Structure of a PHP script

• A PHP script is typically consists of a sequence of
statements(instructions).

• Each statement, except the last one, must be
terminated with a semicolon.

• PHP is a free format language, thus spaces can be
used freely to separate different components in a
statement.

IT3505 Web Application Development II

Structure of a PHP script …

<?php

$a =-47;

$_a = "abc";

$a11 = 3 +

3.45e2;

echo("$a,".

"$_a,".

"$a11");

?>

IT3505 Web Application Development II

Operator Precedence and
Associativity

Operator Associativity Type

** right Arithmetic operators

! right Logical not

*, /, % left Arithmetic operators

+, -, . left Arithmetic and String

&& left Logical

|| left Logical

= right Assignment

and left Logical

xor left Logical

or left Logical

•Computation of the value

of an expression is

primarily governed by the

precedence and

associativity assigned for

each operator in the

expression.

•Precedence (from highest

to lowest) of some of the

commonly used operators

are listed in the table.

IT3505 Web Application Development II

Operator Precedence - Examples

• Precedence of operators is used when
evaluating an expression involving operators
of different precedence levels.

• 2 ** 3 + 3 * 2

• This expression is evaluated as below

• ((2 ** 3) + (3 * 2)) =(8 + (3 * 2)) = (8+6) = 14

IT3505 Web Application Development II

Operator Associativity - Examples

• Associativity of operators is used when
evaluating an expression involving operators
of the same precedence levels.

2 * 3 * 3 * 2

This expression is evaluated as below

(((2 * 3) * 3) * 2) = ((6 * 3) * 2) = (18 * 2) = 36
* is left associative

IT3505 Web Application Development II

Operator Associativity - Examples

• Associativity of operators is used when
evaluating an expression involving operators
of the same precedence levels.

2 ** 3 ** 2

This expression is evaluated as below

(2 ** (3 ** 2)) = (2** 9) = 512

** is right associative

IT3505 Web Application Development II

Operator Precedence and Associativity
- Examples

• Consider the following expression:

2 + 3 *4 – 3**2 + 7 * 2

This expression is evaluated as below

2 + 3 *4 – 3**2 + 7 * 2 = 2 + 3 *4 – 9 + 7 * 2 = 2 + 12 –
9 + 7 * 2 = 2 + 12 – 9 + 14

= 14 – 9 + 14 = 5 + 14 = 19

IT3505 Web Application Development II

Operator Precedence and Associativity –
Changing the default order of computation

The default order of computation can be
changed by using parenthesis.

Example
(2 + 3) *4 – 3**2 + 7 * 2

This expression is evaluated as below
5 *4 – 3**2 + 7 * 2 = 5 *4 – 9 + 7 * 2 = 20 – 9 + 7
* 2 = 20 – 9 + 14 = 11 + 14 = 25

IT3505 Web Application Development II

PHP Control Structures

IT3505 Web Application Development II

Control Structures

• A PHP script is a sequence of statements.

• A Statement typically ends with a semicolon.

• Statements can be grouped into a statement-
group by encapsulating a sequence statements
with curly braces.
– A statement-group is also treated as a statement.

Thus a statement-group can appear anywhere a
statement can appear.

• Control structures define the order of execution
of statements in a program.

IT3505 Web Application Development II

Conditional Execution : if Structure

Syntax :

if (expr)
statement

The expr must
be evaluated to
a Boolean
value(TRUE or
FALSE).

if (expr) statement

Semantics:

If the value of
expr is TRUE the
statement is
evaluated, else it
is ignored.

exprr

Statement

TRUE

FALSE

IT3505 Web Application Development II

if Structure : Examples

<?php

$a = 4;

$b = 3;

if($a > $b)

echo "$a is larger then $b";

?>

IT3505 Web Application Development II

if Structure : Examples

A statement-group can appear anywhere a
statement can appear.

<?php
$a = 4;
$b = 3;
if($a > $b){

echo "$a is larger then $b\n";
$c = $a - $b;
echo "$a is larger than $b by $c";

}
?>

IT3505 Web Application Development II

if Structure : Examples
If structures can be nested.

<?php
$mark1 = 10;
$mark2 = 80;
$mark3 = 90;
if((($mark1+$mark2+$mark3)/3) > 50){

echo "Pass\n";
if ($mark1 < 50)

echo "mark1 needs improvement\n";
if ($mark2 < 50)

echo "mark2 needs improvement\n";
if ($mark3 < 50)

echo "mark2 needs improvement\n";
}

?>

IT3505 Web Application Development II

Conditional Execution : if/else
Structure

Syntax :

If (expr)
statement1

else
statement2

The expr must be
evaluated to a
Boolean
value(TRUE or
FALSE).

if (expr) statement

Semantics:

If the value of
expr is TRUE the
statement1 is
evaluated, else
statement2 is
evaluated.

exprr

Statement1

TRUE

FALSE

Statement2

IT3505 Web Application Development II

if/else Structure : Example

<?php

$marks = 20;

if($marks > 50)

echo "Pass\n";

else

echo "Fail\n";

?>

IT3505 Web Application Development II

Nesting if/else Structures :
if/elseif/…./else

• If/else structures can be nested by using if/elseif/else structure. Any
number of elseif statements can be included in between if and else parts.

<?php
$mark = 70;
if($mark > 70)

echo "Excellent\n";
elseif ($mark > 50)

echo "good\n";
elseif ($mark > 30)

echo "pass\n";
else

echo "fail\n";
?>

IT3505 Web Application Development II

Multi-way Branching : switch
structure

• The switch statement can be considered as an aggregation of a
series of IF statements on the same expression.

Syntax:

switch (expr){

case val1 : statement1;

break;

case val2 : statement2;

break;

………………………………………

case valn : statementn;

break;

default : statement;

break;

}

Semantics:

The expr is evaluated first and

its value is compared with val1,

val2,.. , valn in that order until a

match found. If a match found

PHP continue to execute the

statements associated with the

corresponding case statement

and the following statements

until the end of the switch block,

or the first break statement is

encountered.

IT3505 Web Application Development II

Multi-way Branching : switch
structure ….

• Examples :

<?php

switch ($i) {

case 0 :

echo “The

value is 0”;

break;

case 2 :

echo “The

value is 2”;

break;

case 5 :

echo “The

value is 5”;

break;

}

<?php

switch ($i) {

case 0 :

echo

“statement 1”;

case 2 :

echo

“statement 2”;

case 5 :

echo

“statement 3”;

}
?>

<?php

switch ($i) {

case 0 :

case 1 :

echo

“statement 1”;

case 2 :

case 3 :

case 4 :

echo

“statement 2”;

case 5 :

echo

“statement 3”;

}

IT3505 Web Application Development II

Looping through statements : while
construct

• while construct
can be used to
loop through a
statement or a
group of
statements.

Syntax :

while(expr)
statement

exprr

statement

TRUE

FALSE

Semantics:

Execute

the

statement

repeatedly

as long as

the expr

evaluates

to TRUE.

IT3505 Web Application Development II

while construct : Example

<?php

$i = 10;

while ($i>0){

echo "$i\n";

$i = $i-1;

}

?>

IT3505 Web Application Development II

Looping through statements : do
while construct

• do while loops are very similar to while loops,
except the truth expression is checked at the end
of each iteration instead of in the beginning.

Syntax :

do

statement

while (expr)

IT3505 Web Application Development II

do while construct : Example

<?php

$i = 10;

do {

echo "$i\n";

$i = $i-1;

} while ($i>0)

?>

IT3505 Web Application Development II

Infinite Loops

• An infinite loop is one in which the while
condition never evaluates to the Boolean
value “FALSE”. Consequently, the loop iterates
forever.

• In certain applications infinite loops are
necessary.

IT3505 Web Application Development II

Looping through statements : for
construct

Syntax :

for(expr1;expr2;expr3)
statement

Each of the expressions (expr1,
expr2, expr3) can be empty or
contain multiple expressions
separated by commas.

When expr2 is empty, the
Boolean value “TRUE” is
assumed.

expr2r

statement

TRUE

FALSE

expr1

expr3

IT3505 Web Application Development II

for construct - Example

<?php

for($i = 10; $i>0; $i = $i-1)

echo "$i\n";

?>

IT3505 Web Application Development II

break and continue commands

• The command break can
be used to terminate an
iteration. After executing
the break command, PHP
terminates the current
iteration and continues to
execute the statements
immediately after the
iteration block.

Example :

<?php

$i = 10;

while ($i>0){

echo "$i\n";

$i = $i-1;

if ($i == 5){

break;

}

}

?>

IT3505 Web Application Development II

break and continue commands …..

• continue is used
within a looping
structures to skip the
rest of the current
loop iteration and to
continue with the
beginning of the next
iteration.

Example :

<?php

$i = 10;

while ($i>0){

if ($i == 5){

continue;

}

echo "$i\n";

$i = $i-1;

}

?>

